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ABSTRACTION 

This work presents a practical three-stage pipeline for constructing dedicated non-player 
characters (NPC) language models using synthetic persona-aligned data.  Rather than 
relying on a single general-purpose model with prompt-based persona conditioning, the 
system trains a separate, fully fine-tuned 3B parameter model per NPC.  The pipeline 
consists of: 
 

• Seed generation, where a local teacher model expands a structured persona brief 
into hundreds of constrained situation “seeds”. 

• Response generation, where the same teacher model produces multi-paragraph, 
in-character responses for each seed. 

• Full fine-tuning, where the synthetic corpus is used to specialize a base Llama-3.2-
3B-Instruct checkpoint into a dedicated NPC model. 

Inference is served from a Python based API running on dedicated GPUs, with one fp16 
NPC model resident in memory at a time and lazy loading for model switching.  The 
approach yields stable, persona-consistent NPCs with minimal manual authoring effort, 
and provides a blueprint for reproducible, persona-centric fine-tuning workflows. 

INTRODUCTION 

Large language models (LLMs) are increasingly used to drive conversational NPCs in games 
and interactive fiction.  The most common patter is to reuse a single general-purpose 
model and attempt to “lock” different characters via prompts, system messages, or 
retrieval-augmented generation (RAG).  While convenient, this strategy often suffers from: 

• Persona drift – characters gradually lose their distinctive voice. 
• Lore bleeding - facts, relationships, or mannerisms leak between NPCs. 
• Prompt bloat – long control prompts consume context that could be used for player 

interaction. 

To address these issues, this work adopts a different stance: for major NPCs, train a 
dedicated model per character.  Each important NPC is backed by its own fully fine-tuned 
LLM with weights specialized to that persona. 

This paper describes a three-stage pipeline that automates the creation of such NPC 
specific models: 

1. Seed generation – a local teacher model creates structured, short “seed situations” 
annotated with tone, setting, and lore. 



2. Response generation – the teacher model expands each seed into multi-
paragraph, in-character responses. 

3. Full fine-tuning – the synthetic corpus is used to fine-tune a Llama-3.2-3B-Instruct 
model into a dedicated NPC model. 

The pipeline is implemented in Python using Hugging Face Transformers, runs efficiently on 
a single RTX 5090 class GPU, and is deployed with a Python inference server that lazy-loads 
NPC models on demand. 

SYSTEM OVERVIEW 

At a high level, the system uses one strong local “teacher” model (Qwen/Qwen2.5-7B-
Instruct) to generate synthetic persona data, and a smaller “student” model (meta-
llama/Llama-3.2-3B-Instruct) as the deployable NPC brain. 

The workflow is: 

1. Persona brief: the designer defines a structured persona for an NPC (e.g. Mindella 
Stormbringer, a witty, flirty cleric with specific lore constraints). 

2. Seed generator: 
a. Prompts the teacher model as a “content planner” 
b. Produces compact situation seeds structured as JSON. 

3. Response generator: 
a. Reads the seeds. 
b. Prompts the teacher as the NPC, generating 150-300 word in-character 

responses for each seed. 
c. Writes all data to JSONL formatted file 

4. Fine-tuning: 
a. Each NPC has its own model directory with weights. 
b. A Python API server loads/unloads models on demand. 
c. Only one fp16 NPC model is resident at a time to respect VRAM limits. 

The following sections detail each stage. 

STAGE I – Seed Generation 

Persona-Aware Seed Design 

The seed generation treats the teacher model as a content planner rather than as the final 
NPC.  The custom-built Python script defines: 

• A persona brief describing canonical lore and constraints for the NPC (weapon, 
enemies, clothing, interests, tone) 



• Valid tones, settings and categories, such as: 
o Tones: [“solemn”, “playful”, “teasing”, “stern”, “compassionate”, …] 
o Settings: “tavern, “market”, “shrine”, “abbey courtyard”, etc. 
o Categories: “prayer/faith”, “after-battle triage”, “ethics/morality”, etc. 

The system prompt instructs the model to output JSON Lines (JSONL) with a fixed schema 
per line: 

• “seed” – a short (<18 words) concrete situation. 
• “tags” – 2 – 4 short labels. 
• “tone” – one of the allowed tone settings. 
• “setting” – one of the allowed settings. 
• “lore_targets” – 1-2 specific world details to weave in later. 

A user-level template then requests: 

 “Generate exactly N unique topic seeds for the category X. Return JSONL: One JSON  

 Object per line, no extra text.” 

Robust JSON Parsing 

Because LLMs sometimes deviate from strict formatting, the script implements a robust 
parser: 

• Attempts to parse each line as JSON. 
• Falls back to ast.literal_eval for pseudo-JSON with single quotes. 
• If JSONL fails, attempts to recover from: 

o A top-level array of objects. 
o Arbitrary text containing balanced {….} blocks. 

Helper functions like fixing trailing commas, extracting top arrays, extract JSON objects, 
help clean any malformed output. 

Each parsed object is normalized into a row: seed, target_str, tone, setting, lore_target_str 

Validation includes: 

• Enforcing max seed length (~20 words). 
• Normalizing tones and settings against allowed lists. 
• Stripping noise and whitespace. 

 

 



Category Balancing and Deduplication 

The custom-built function, generate_seeds, orchestrates generation: 

• Accepts a desired total seed count (e.g., 250). 
• Distributes counts across categories using balancing counts. 
• For each category: 

o Calls custom Python code to request the teacher to output n seeds. 
o Cleans and deduplicates seeds by forcing all seeds to lower by category. 

If the total count is still below the target after one pass, the script performs a top-up phase, 
sampling additional seeds from categories until the quota is met.  Finally, each seed is 
assigned a unique id and written to a TSV file.  The TSV becomes the canonical seed catalog 
for the NPC. 

STAGE II – Response Generation 

Persona-Locked Teacher Prompt 

The second stage script treats the teacher model as the NPC itself, not a planner.  A system 
persona string defines the NPC’s voice and constraints: 

• Witty, flirty, non-nonsense human cleric. 
• Canon details (weapon, enemies, shop, weapon, armor, etc.). 
• “Speak only in-world.” 
• Vary rhythm (mix short punchy lines and longer sentences). 

The user template is structed as: 

• Category, seed, tags, tone, settings, lore_targets. 
• Explicit constraints: 

o Mention lore targets naturally where possible. 
o Keep canon consistent. 
o No titles, preambles, or out-of-character explanations. 
o Output only the NPC’s speech/text. 

This encourages the model to generate content that is rich, but tightly bound to the persona 
and world. 

 

 

 



Generation Loop and Validation 

The function defined as forge drives the process of generation and validation: 

1. Load seeds from the TSV file using a Python routine. 
2. For each seed: 

a. Generate a target number of variants (e.g. per_seed=3). 
b. Use gen_one(…) to call the teacher model with the system persona and user 

brief. 
3. Validate each candidate response: 

a. Minimum word count (min_words, eg.110). 
b. Reject outputs mentioning AI-related leak phrases (e.g. “as an AI”, “language 

model”, “Qwen”). 
c. Normalize whitespace and text. 
d. Deduplicate using a SHA-1 hash (response_hash) of the normalized text 

across the entire run. 

If a variant fails validation, the script retries up to a configurable number of times.  If still 
invalid, the variant is skipped an logged. 

JSONL Output and Resumability 

Each accepted response is appended to a JSON object to an output JSONL file. 

The script is resumable: 

• load_existing_jsonl(…) scans the output file to find how many variants already exists 
per seed. 

• On rerun, it skips completed seeds and continues generating more response until 
the configured per_seed count is reached. 

This design allows incremental dataset growth without manual bookkeeping.  The resulting 
JSONL file forms the core synthetic training corpus for the NPC. 

STAGE III – Full Fine-Tuning on Llama-3.2-3B-Instruct 

The Python script performs a full fine-tune on a base model (meta-llama/Llama-3.2-3B-
Instruct) using only the NPC’s synthetic responses. 

Data Loading and Wrapping 

The script supports two input formats: 

• Plain text (.txt) one sample per line. 
• JSONL (.jsonl) expects a “response” field. 



For JSONL file types: 

• Filters out short responses using a minimum word threshold (e.g. min_words=60). 
• Wraps each response with explicit boundary tokens 

These markers help the model distinguish sample boundaries in the packed training 
sequences.  If <BOS> / </BOS> tokens are not preset in the tokenizer vocabulary, they are 
added and the model’s embeddings resized accordingly. 

Tokenization and Sequence Packing 

The dataset is tokenized with: 

• Truncation to a fixed seq_len (e.g. 512). 
• No additional special tokens beyond what is already in the text. 

To improve training efficiency, the script packs multiple responses into contiguous 
sequences of fixed length: 

• Concatenates all input_ids, inserting eos_token_id between samples. 
• Computes the largest multiple of seq_len that fits. 
• Slices the concatenated sequence into seq_len chunks and constructs matching 

attention_mask arrays. 

This “packing” reduces padding and makes better use of GPU compute. 

Training Configuration 

Key training arguments: 

• Model: meta-llama/Llama-3.2-3B-Instruct 
• Precision: bf16 or fp16 on GPU; fp32 on CPU 
• Gradient checkpointing enabled to reduce VRAM usage 
• Attention implementation forced to “eager” for stability. 
• Batch size: small per device (e.g. batch=1) with higher gradient_accum (e.g. 24) to 

simulate larger effective batch sizes. 
• Optimizer: 

o Default: Adafactor (memory-efficient, via Adafactor + AdafactorSchedule). 
o Optional: adamw_torch or 8-bit AdamW via bitsandbytes if requested. 

• Learning rate: ~6e-6 
• Epochs: typically ~1.0-1.5 passes over the packed dataset. 
• Weight decay and warmup ratio configured modestly. 



The script uses Hugging Face Trainer with a custom optimizer when Adafactor is selected.  
Evaluation is optional; for small, tightly targeted datasets, a tiny held-out split (e.g. 1% of 
sequence) is used when the dataset is large enough.  At the end of training, the script saves 
the fine-tuned model weights (in safetensors format) and the updated tokenizer including 
BOS if added.  The output directory becomes the deployable NPC model folder. 

INFERENCE AND DEPLOYMENT 

Although the deployment script is not shown in this paper, the architecture is 
straightforward: 

• The fine tuned NPC models are stored in separate directories. 
• A Python inference server (e.g. FastAPI or Flask) exposes endpoints such as: 

o GET /list – List available NPCs. 
o POST /chat/{npc} – Send a message and receive the NPC’s reply. 
o POST /preload/{npc} – Proactively load an NPC model into memory. 

• The server maintains an in-process cache: 
o At most one fp16 Llama-3.2-3B NPC model resident at a time (to fit withing 

VRAM). 
o When a new NPC is requested: 

 If no model is loaded, load the requested one. 
 If another NPC is loaded, delete it and free CUDA memory, then load 

the new model. 
• Requests are serialized or lightly queued to avoid overlapping model loads. 

This “one-NPC-at-a-time” constraint keeps the system simple and GPU friendly while still 
allowing a large roster of NPCs behind a single API surface.  Clients (e.g. C# frontends, 
webUIs, or a BBS system) call the Python API and treat each NPC as a stable 
conversational endpoint. 

EVALUATION 

Formal quantitative evaluation of NPC persona quality is challenging, but several practical 
criteria emerge: 

• Persona consistency 
o Does the NPC maintain a coherent voice, tone, and worldview across long 

conversations? 
o Does it respect canonical facts (weapons, location, enemies, relationships)? 

 
 



• Style stability across seeds 
o Responses derived from different categories and seeds (e.g. “after-battle 

triage” vs. “festivals/holy days”) should still sound like the same character. 
• Absence of OOC behavior 

o The model should avoid breaking character, mentioning AI systems, or 
exposing training process details. 

• Diversity within constraints 
o Even with a strong persona lock, the NPC should not become repetitive or 

template-like. 

Empirically, this pipeline yields NPCs that exhibit: 

• Strong alignment with their persona beliefs. 
• Low incidence of AI self-reference due to validator filters. 
• High continuity in how they discuss recurring lore (e.g. specific towns, enemies, or 

relationships). 

Future work could introduce automatic metrics, such as embedding-based similarity to 
seed descriptors, classifier-based persona adherence scores, or human evaluation 
protocols. 

LIMITATIONS AND FUTURE WORK 

While effective, the system has several limitations: 

• Data source homogeneity – all training data is synthetic, generated from a single 
teacher model; style diversity is constrained by the teacher’s own biases. 

• Per NPC cost – each major NPC requires its own fine-tuning run and model storage, 
which, while feasible for 3B models, may become expensive for very large casts. 

• No explicit memory module – NPC “memory” is encoded implicitly in weights 
rather than via an external memory or RAG mechanism;  this simplifies design but 
limits dynamic, long-term learning. 

Future directions include: 

• Combining this persona-locked fine-tune with lightweight RAG for dynamic world 
state. 

• Exploring smaller base models or quantization for lower-cost deployment. 
• Introducing shared base layers with light per-NPC adapters to reduce storage while 

preserving identity. 
• Developing automated persona adherence benchmarks for systematic evaluation. 



CONCLUSION 

This paper has presented a practical, end-to-end pipeline for building dedicated NPC 
language models using synthetic persona-aligned data.  By decomposing the process into 
seed generation, response expansion, and full fine-tuning, the system transforms a 
structured character brief into a deployable 3B-parameter NPC model with stable voice 
and lore. 

The use of a strong local teacher model (Qwen2.5-7B-Instruct) for data generation and a 
smaller student model (Llama-3.2-3B-Instruct) for deployment strikes a pragmatic balance 
between quality and cost.  A Python-based inference service with lazy-loaded fp16 models, 
enables multiple NPCs to share a single GPU while maintaining strong persona isolation. 

In contrast to prompt-only persona conditioning, this approach treats each major NPC as a 
first-class model, with its own corpus, weights, and API entry point.  For narrative-drive 
systems, games, and interactive worlds, such dedicated NPC brains offer a robust 
foundation for long-term, coherent storytelling. 
 

 

  


